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The antifungal activity of molecular identified Chilean saprobiontic fungi, Trichoderma viride,
Schizophyllum commune and Trametes versicolor, on the fungal plant pathogens Botrytis cinerea and
Fusarium oxysporum, and the saprotrophic mould Mucor miehei was investigated using two types
of inhibition bioassay: (1) bi-compartmented Petri dishes and (2) two Erlenmeyer flasks connected
by their upper parts. The chemical composition of volatile organic compounds (VOCs) released by
saprobiontic fungi was also investigated using headspace solid-phase microextraction (SPME) and gas
chromatography/mass spectrometry (GC-MS) analysis. Of the saprobiontic fungi evaluated, one isolate
of S. commune showed the highest inhibitory activity against B. cinerea and M. miehei, 86.0 ± 5.4 and
99.5 ± 0.5% respectively. The volatile profiles of fungal isolates were shown to contain a different class
of compounds. The major components in the headspace of mycelial cultures were 6-pentyl-α-pyrone
(T. viride), ethanol and β-bisabolol (S. commune), and a sesquiterpene alcohol (Tr. versicolor). This is the
first study reported on the release of VOCs by Chilean native fungi and their antifungal activity wrt. plant
pathogenic fungi.

Keywords: biological activity; VOCs; saprophytic fungi; phytopathogenic fungi; SPME

1. Introduction

Fungi produce, and release, volatile organic compounds (VOCs), including hydrocarbons,
alcohols, ketones, aldehydes, ethers, esters, terpenes, terpene derivatives and several heteroaro-
matic compounds [1–3]. Fungal volatile organic compounds (FVOCs) have been detected from
fungal fruit bodies [4], fungal-spoiled food [5] and fungi within buildings [6]. These compounds
have been studied for a variety of purposes, including natural aromatic flavouring [7], pollina-
tor attractants [8,9], indicators of fungal contamination [3] and as biocontrol agents (BCAs) of
agricultural plant pests and diseases [10–13]. The use of volatile-producing fungi and/or their
VOCs as BCAs for pathogen control constitutes a real alternative to the use of chemical products
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504 H. Schalchli et al.

[14,15] that have caused an increase in genetic resistance to fungicides (e.g. Botrytis cinerea),
toxin accumulation in foods and environmental contamination. Volatile natural products released
by fungi are attractive candidates for use as novel agents for controlling agricultural pests [16].
However, data concerning the volatile metabolites emitted by fungi as control agents are limited,
and it is necessary to continue research on volatile-producing fungi and their potential application
in biological control strategies of fungal plant diseases.

Saprobiontic fungi are the most important and efficient microorganisms involved in natural
wood decomposition, where they degrade and take up nutrients from dead organic matter by
means of enzymatic process [17]. Trichoderma sp. is one of the most studied biocontrol agents
due to the production of degrading enzymes, antibiotic non-volatile and volatile compounds, and
mycoparasitism [18]. The world’s native forests preserve fungal strains with valuable biological
properties that are waiting to be discovered. Saprobiontic fungi play an important role in these
ecosystems because of their production of enzymes and secondary metabolites involved in the
decomposition of dead organic matter and their competition behaviours with other microorgan-
isms to colonise a niche [19]. Because of these characteristics, saprobiontic fungi isolated from
the forest have the potential to provide novel candidates with antifungal activities. To date, the
study of antimicrobial activity of saprobiontic fungi in Chile has been focused on non-volatile
secondary metabolites [20–23]. The aim of this study was to investigate the production of volatile
metabolites emitted by saprobiontic fungi growing in the temperate native forest of the south of
Chile and, for the first time with native Chilean isolates, evaluate their respective antibiotic effects
on phytopathogenic fungi.

2. Material and methods

2.1. Fungi collection and growth conditions

Chilean native fungal isolates were collected between July and October 2008 from the native
forest Rucamanque located in south–central Chile (latitude, 38◦39′S; longitude, 72◦35′W). The
forest was composed mainly of roble (Nothofagus obliqua), olivillo (Aextoxicon punctatum), tepa
(Laureliopsis philippiana), ulmo (Eucryphia cordifolia), laurel (Laurelia sempervirens), lingue
(Persea lingue) and tineo (Weinmannia trichosperma) [24]. Four native saprobiontic fungal iso-
lates were obtained from fruit bodies and dead wood samples, transferred to the Center of Chemical
Ecology of Terrestrial and Aquatic Systems at the Universidad de La Frontera (Chile), and kept at
4 ◦C until the cultivation of the respective myceliam. Phytopathogenic fungi (B. cinerea and Fusar-
ium oxysporum) strains from highbush blueberries (Vaccinium corymbosum) were obtained from
the fungal collection of Instituto de Investigaciones Agropecuarias (INIA-Quillamapu, Chile) and
Mucor miehei, included in the assays as a reference strain, was obtained from the fungal collection
of the Universidad de Talca (UTAL, Chile). The three test strains were grown on potato dextrose
agar (PDA; Difco Laboratories, Detroit, MI, USA) at 25 ◦C in the dark for 7 days and stored in
both Petri dishes sealed with Parafilm at 4 ◦C and glass tubes containing 5 mL of PDA submerged
in sterilised paraffin oil at 4 ◦C.

2.2. Identification of saprobiontic fungi

Identification of the fungal isolates was carried out using two methodologies: (1) morphological
characteristics and (2) molecular analysis.

Morphological characteristics were determined in the Laboratorio de Química de Productos
Naturales (Universidad de Concepción, Chile).
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Chemistry and Ecology 505

Genomic DNA of fungal isolates was obtained from fresh mycelia culture. The samples were
frozen in liquid nitrogen and powdered using a mortar and pestle. They were resuspended in TE
buffer (10 mM Tris/Cl pH 8.0, 1 mM EDTA), and an equal volume of lysis buffer was added (2%
SDS, 10 mM Tris/Cl, 1 mM EDTA pH 7.0). After incubation on ice for 15 min, the mixture was
centrifuged at 3000 g for 10 min. The supernatant was subjected to phenol/chloroform extraction,
followed by ethanol precipitation [25]. The resulting pellet was resuspended in TE buffer con-
taining 100 μg · mL−1 RNase A (Fermentas®) and incubated at 37 ◦C for 30 min. The suspension
was then subjected to phenol/chloroform extraction and ethanol precipitation. Whole genomic
DNA was dissolved in deionised and nuclease-free water.

DNA samples were subjected to PCR using the technique developed by Mullis [26]. The
primers used were: forward, ITS1 5′-TCCGTAGGTGAACCTGCGG-3′ and reverse, ITS4
5′-TCCTCCGCTTATTGATATGC-3′, as described by White et al. [27] and synthesised by Invit-
rogen, USA. The primers were used to amplify a fragment of rDNA, including the ribosomal
RNA gene, partial sequence; internal transcribed spacer (ITS) 1, 5.8S ribosomal RNA gene, and
ITS 2, complete sequence; and 28S ribosomal RNA gene, partial sequence.

PCR amplifications were performed in a total volume of 50 μL by mixing 15 ng of the template
DNA with 20 μM of each primer, 25 μM of each dNTP, and 2.0 U of Taq DNA polymerase
(recombinant) and 10 × Taq Buffer (100 mM Tris/Cl, pH 8.8 at 25 ◦C; 500 mM KCl; 0.8% v/v
Nonidet-P40, Fermentas®). These reactions were subjected to an initial denaturation of 5 min at
95 ◦C, followed by 30 cycles of 1 min at 94 ◦C, 1 min at 55 ◦C, and 2 min at 72◦C, with a final
extension of 5 min at 72 ◦C in a Labnet MultiGene™ 96-well Gradient Thermal Cycler. Aliquots
(2 μL) were analysed by electrophoresis in 1.2% (w/v) agarose gel in 1× TAE buffer (40 mM
Tris, 20 mM acetic acid, 1 mM EDTA pH 8), stained with ethidium bromide and photographed
over a transilluminator. The molecular size marker was GeneRuler™ 100bp Plus DNA Ladder
(Fermentas®) (not shown data). Results were obtained in Laboratory of Biology and Biochemistry
Soil (Universidad de La Frontera, Temuco, Chile).

Fragments of the ribosomal DNA region, including the spacers ITS1 and ITS2, genes 5.8S
(complete sequence), SSU and LSU (partial sequence) were sequenced in both directions using
an automated DNA sequencing system (ABI, Model 3730XL Genetic Analyser, by Macrogen,
Korea). Sequence was compared with Basic Local Alignment Search Tool (BLAST) data base.

2.3. Antifungal activity

Antifungal activity was evaluated by developing two methodologies: (1) two-compartmented plate
bioassay, and (2) Erlenmeyer flasks connected by their upper parts.

2.3.1. Two-compartmented plate bioassays

Two-compartmented Petri dishes (94 × 16 mm; 47 mL) (Greiner, Germany) were filled with
50 mL 4% of PDA. One of the compartments was inoculated in the centre with a 6-mm diam-
eter mycelium disc of fresh culture of test strain (target fungus), and the second compartment
was inoculated with a disk of fungal study isolate of the same size. The control treatment was
prepared by applying the test strain in one compartment and evaluating their mycelial growth
without the presence of the fungal isolate in the other compartment. The preparations were placed
together and wrapped around the outer surface with two layers of Parafilm M®, then incubated
at 25 ± 1 ◦C, until the growth of any fungi (test and control treatments) reached the edge of
the plate. The mycelial growth (colony diameter in mm) was measured with the help of an
optical microscope (Japan Optical), and the data were expressed as percentage inhibition in rela-
tion to the control. In another experiment, test strains were exposed to 15 μL of 3-methylbutyl
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506 H. Schalchli et al.

acetate (99.9%, Sigma-Aldrich), added to 6-mm filter disks before the start of the experiment, and
grown on PDA at 25 ◦C. This compound was selected as a positive control, because it has been
reported as a significant inhibitor of the mycelium growth of phytopathogenic fungi [10]. The
amount of 3-methylbutyl acetate was determined in relation to data reported by Strobel et al. [10].
A preliminary bioassay was assessed with the aim of determining the appropriate moment of the
inoculation of each strain. In order to do this, study isolates and test strains were cultivated on Petri
dishes with the same substrate, and the growth was daily measured daily to determine the time
when each strain reached the edge and/or the central division of the Petri dish. The recorded times
were used to calculate the moment of inoculation of each strain, with the purpose of avoiding the
invasion of another compartment before the bioassay was ended. In this type of bioassay, each
test strain was tested with all the study isolates. Each experiment was repeated at least four times.

2.3.2. Erlenmeyer flasks

A 250-mL Erlenmeyer flask, charged with 50 mL of 4% PDA, was inoculated in the centre with
a 6-mm diameter mycelium disc of fresh culture of one the three most bioactive studies isolate,
as determined in the two-compartmented plate bioassay. The cultures were covered with three
layers of Parafilm M® and incubated at 25 ± 1 ◦C until growth reached the edge of the flask. At
this stage, another Erlenmeyer flask containing 50 mL of 4% PDA was inoculated in the centre
with the most inhibited plant pathogenic fungus, as determined in the two-compartment plate
bioassay. Immediately, both flasks were joined by their upper parts and separated by a glass
microfibre filter (Whatman, GF/D, 47 mm dia. and 2.7 μm in particle retention) placed in the
centre to prevent the transfer of spores between species. The two Erlenmeyer flasks were coated
with polytetrafluoroethylene (Teflon) tape where they were joined and incubated at 25 ± 1 ◦C
until the growth of the control treatment reached the edge of the flasks. The control was the same
bioassay without the addition of a culture of study isolate. Three replicates were developed for
all tests and controls.

2.4. Volatile compound collection by SPME

Study isolates were cultivated in 40-mL SPME glass vials (Supelco, Inc., PA, USA) with 10 mL of
4% PDA and incubated for 10 days at 25 ± 1 ◦C in the dark. Volatile compounds were absorbed
by headspace SPME (HS-SPME) for 10 h at 25 ◦C with a 100-μm polydimethylsiloxane (PDMS)
fibre, as described previously by Chuankun et al. [28]. After each volatile trapping, the fibre was
conditioned with helium for 10 min at 250 ◦C. Controls of SPME trapping consisted of sampling
vials that contained PDA, maintained in the same conditions as for the treatments.

2.5. Analysis of volatile compounds by GC-MS

The volatile compounds collected by SPME were analysed using a gas chromatograph (Model
Focus, Thermo Electron Corporation, Waltham, USA), coupled to mass spectrometer (Model
DSQ, Thermo Electron Corporation), equipped with a DBP-1 capillary column (30 m, 0.2 mm,
0.33 μm). Helium was used as the gas carrier, with a flow rate of 1.5 mL · min−1. Mass spectra
were acquired in the mass range of 35–500 a.m.u. Ionisation was performed by electron impact at
70 eV with an ion source temperature set at 200 ◦C. The SPME fibre was inserted into the injector
of the gas chromatograph for thermal desorption in splitless mode for 2 min, with the injector
temperature held at 250 ◦C. The GC oven temperature was programmed to ramp from 40 to
260 ◦C at 5 ◦C · min−1 and then held for 5 min. Volatile compounds were tentatively identified by
comparing: (1) mass spectra with data from the NIST MS Search 2.0 library, and (2) experimental
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Chemistry and Ecology 507

Kovats indices (KI) with theoretical KI values from synthetic standards compounds reported in
the US National Institute of Standards and Technology (NIST) Mass Spectral Library database
(NIST, http://webbook.nist.gov/chemistry/name-ser.html).

2.6. Statistical analysis

The results of both assays were expressed as the percentage inhibition of radial growth compared
with the control. Data were averaged and the standard error of the means (SEM) was calculated.
Inhibition percentage data were transformed using an angular transformation (arc sen

√
x/100)

prior to statistical analysis. Post hoc analysis of differences in means of the assay data was
conducted with the Tukey test (α = 0.05) using the SPSS statistical program (SPSS for Windows
version 10.0.1).

3. Results and discussion

3.1. Fungi identification

Morphological analysis of fungal collections revealed that two belonged to the genus Schizophyl-
lum, one to Trametes and one to Trichoderma. The nucleotide sequence of ITS regions containing
the 5.8S ribosomal gene were obtained from isolates of these four collections and compared using
the BLAST. The maximum likehood tree test (Figure 1) based in sequence similiraties showed that
two isoaltes grouped with S. commune, one with T. viride and one with Tr. versicolor. However,
S. commune (Shi-1) and Tr. versicolor isolates differed genetically from previously known refer-
ence strains, suggesting that it may represent a regional ecotypes of these species (Figure 1a and d,
respectively). Test strains obtained from culture collections were also molecurlarly characterised
and their identitities with B. cinerea, F. oxysporum amd M. miehei confirmed.

In summary, the saprophtytic strains used in this study were two S. commune (JF828027 Shi-1;
JF694037 Shi-2), Tr. versicolor (JF828026 Tra-1) and T. viride (JF828028 Tri-1). Plant pathogenic
fungi were also molecular identified, isolates resembled B. cinerea Pers.:Fr. (teleomorph:
Botryotinia fuckeliana (de Bary) Whetzel), F. oxysporum and M. miehei (Rhizomucor miehei).

3.2. Antifungal activity

Two methods were used to evaluate the antifungal activity of volatile metabolites released from the
study isolate on mycelial growth of test strains. The first approach comprised a bi-compartmented
Petri dish array. The first bioassay, which was a relatively simple and rapid test modified from
Strobel et al. [10] and Gu et al. [29], allows the evaluation of the inhibitory activity by volatiles
emitted by microorganisms without interference from other compounds (e.g. enzymes and/or
non-volatile metabolites). Using this assay showed that volatile metabolites of both S. commune
isolates inhibited the growth of B. cinerea by only ∼ 20% compared with the control treatments,
whereas volatiles of Tr. versicolor and T. viride showed low antifungal activity. The positive control
(15 μL of 3-methylbutylacetate) inhibited the growth of B. cinerea, M. miehei and F. oxysporum
by 100 ± 0.0%, 85.6 ± 1.8% and 66.6 ± 0.8%, respectively (Figure 2).

Owing to the low percentage of inhibition observed using the bi-compartment Petri dish assay
method, a second assay comprising two Erlenmeyer flasks connected by their upper parts was used.
This bioassay was modified from Dal Bello et al. [30], who evaluated the effect of volatile metabo-
lites of Trichoderma hamatum on soil-borne phytopathogenic fungi. Although this assay can be
used to evaluate a larger biomass of fungus-producing volatiles without interference from other
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508 H. Schalchli et al.

Figure 1. Dendrograms demonstrating the taxonomic relationship of the study isolates. (a) Schizophyllum commune
(Shi-1), (b) Schizophyllum commune (Shi-2), (c) Trichoderma viride and (d) Trametes versicolor. The GenBank accession
numbers of the sequences are given.
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Chemistry and Ecology 509

Figure 2. Mean growth inhibition (% ± SE) of Botrytis cinerea, Fusarium oxysporum and Mucor miehei exposed to
VOCs emitted by four native saprophytic fungal isolates, grown on potato dextrose agar (PDA) at 25 ± 1 ◦C and evaluated
using a bi-compartmented Petri dish assay (N = 4). Growth was expressed as percentage inhibition compared with the
control (no volatile-producing fungus). Bars within a strain with the same letter are not significantly different based on
the Tukey test (α = 0.05).

metabolites, it has disadvantages in terms of the accumulation of carbon dioxide and decreased
levels of oxygen. These experiments were carried out with only isolate/target strain combina-
tions showing the highest inhibitory effect in the bi-compartment Petri dish bioassay. The isolates
tested were: S. commune (Shi-2) with B. cinerea and F. oxysporum, and S. commune (Shi-1) with
M. miehei. S. commune (Shi-1) inhibited the M. miehei growth by 99.5 ± 0.5% and S. commune
(Shi-2) inhibited Fusarium sp. and B. cinerea growth by 63.3 ± 1.2% and 86.0 ± 5.4%, respec-
tively (Figure 3). The increase in the inhibitory effect of S. commune strains using this method
may be due to an increase in the mycelium biomass producing volatiles, because the flasks have a

Figure 3. Mean growth inhibition (% ± SE) of test fungi exposed to native wood decay fungal isolates using a two
Erlenmeyer flask assay (N = 4). Growth was expressed as percentage inhibition compared with the control (no saprobiontic
fungus). Values of bars with different letters are significantly different based on the Tukey test (α = 0.05).
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510 H. Schalchli et al.

greater surface area for mycelium growth than Petri dishes. Alternatively, growth of target fungi
may be more sensitive to the high CO2 and low O2 levels in the closed flask system.

Very little data exists concerning the antifungal effect of volatile compounds emitted by
saprobiontic fungi on plant pathogenic species. Most of the reported studies have focused on
volatiles released from the biocontrol agent Trichoderma sp. Dal Bello et al. [30] carried out a
similar assay to study the effect of volatile metabolites from the saprobiontic fungus Trichoderma
hamatum on the growth of phytopathogenic soil-borne fungi using the same substrate (PDA) as
in our study, and observed that the growth of three soil fungi strains were inhibited by >60%, two
strains were not affected, and one strain was stimulated. Our results showed inhibition percentages
>80% on B. cinerea, a plant pathogen that infects post-harvest berries and others crops in Chile
and other parts of the world.

3.3. Headspace analysis

The profiles of the volatile compounds emitted by the native saprophytic isolates tested are
shown in Table 1. The main components identified by GC-MS were 6-pentyl-α-pyrone (6-PAP)
(T. viride), ethanol (S. commune, Shi-1), β-bisabolol (S. commune, Shi-2) and a sesquiter-
pene alcohol (Tr. versicolor). 6-PAP is a characteristic compound of the genus Trichoderma

Table 1. Chemical composition of volatiles obtained from mycelial cultures of saprophytic fungal strains using
solid–phase microextraction (SPME).

Native fungal strains (relative area, % ± SD)

Trichoderma Trametes Schizophyllum Schizophyllum
Compound KI viride versicolor commune (Shi–1) commune (Shi–2)

Ethanol – – – 59.19 ± 4.93 25.38 ± 3.31
Mercaptoacetone – – – – 6.96 ± 2.48
3-Methyl-1-butanol – – 9.52 ± 4.4 – –
2-Methyl-1-butanol – – 3.53b – –
2-Methyl-1-propyl acetatea 758 – – – 2.36 ± 0.04
Ethyl 2-methylbutanoate 836 – – 13.39 ± 0.37 2.32 ± 0.99
2-Methylbutyl acetate 863 – – 10.04 ± 1.33 5.63 ± 0.90
6-Pentyl-α-pyrone 1434 96.71 ± 0.65 – – –
β-Himachalenea 1469 0.26 ± 0.03 – – 1.73 ± 0.54
m/z = 93 (100), 121 (97),

39 (79), M+ 164 (79), 107
(73), 79 (67), 95 (63), 77
(59), 110 (41), 123 (34), 55
(28), 136 (19)

1478 1.50 ± 0.26 – – –

α-Bergamotene 1482 – – 2.71b 1.39 ± 1.05
β-Bisabolenea 1498 0.16 ± 0.04 – 6.96 ± 0.02 6.36 ± 1.48
Cadinenea 1497 – 11.29 ± 5.5 – –
Spathulenola 1553 – 18.67b – –
m/z = 203 (100), 218 (40),

147 (16), 69 (13)
1610 – 1.39 ± 0.7 – –

β-Bisabolola 1652 – – 9.09 ± 1.34 35.67 ± 11.02
m/z = 137 (100), 81 (62), 95

(44), 69 (38), 41 (34)
1714 – 48.19 ± 10.6 – –

m/z = 152 (100), 121 (92),
69 (70), 41 (47),

1736 – – – 5.56 ± 0.07

m/z = 69 (100), 121 (99),
166 (85), 138 (76), 41 (55)

1808 – – – 5.43 ± 0.01

Notes: Data are averages of two cultures grown on the same medium. Compounds appearing in the control PDA plate and with values <1%
were omitted from the list of compounds. All volatile compounds were identified by comparing mass spectra with data from the NIST MS
Search 2.0 library. aCompounds identified by comparison of experimental Kovats Index (KI) with literature data. bCompounds detected in
only one repetition.
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Chemistry and Ecology 511

spp., and has caused great interest due to its strong coconut-like aroma [31], phytotoxic activity
[32] and antifungal activity [11]. The antifungal activity of 6-PAP, synthesised artificially and/or
by different strains of Trichoderma spp., on plant pathogenic fungi, has been demonstrated on
Rhizoctonia solani [33], F. oxysporum [34], Gaeumannomyces graminis [35, 36] and B. cinerea
[37]. Other studies have shown that Trichoderma isolates can inhibit the growth of, and kill, wood
decay fungi, such as Lentinus lepideus, by releasing VOCs [38]. However, although 6-PAP was
the main volatile compound produced by T. viride in this study, this strain showed only slight anti-
fungal activity, paticularly on B. cinerea and M. miehei. It is possible that the low activity shown
by T. viride in this study was due to the culture conditions, for example, harvest time, substrate
composition, culture temperature and light conditions, which were not optimised to each strain.
Furthermore, it has been reported that volatile compounds emitted by Trichoderma sp., and their
bioactivity, depend strongly upon the species and the substrate composition [39].

Some of the compounds identified in this study have been commonly reported in plants, for
example, β-bisabolol and spathulenol [40,41]. Others compounds such as 2-methyl-1-butanol
and 3-methyl-1-butanol [2,42] are typical volatiles emitted by fungal species, and have been
suggested for use as chemical markers [43–45], e.g. 3-methyl-1-butanol, 2-hexanone and
2-heptanone, in detecting fungal growth in buildings [46]. Both isolates of S. commune pro-
duced high amounts of ethanol in relation to the others compounds. The production of
this compound by microorganisms has been widely studied because of the production of
potable, chemical and fuel ethanol, also known as bioethanol [47]. It has been detected in
the headspace of mycelial cultures of other fungi, such as Gliocladium roseum, Trichoderma
sp., Mucor sp. and Penicillium expansum [6,39,48]. However, in this study, ethanol was
not detected in either T. virens or Tr. versicolor strains. Some of the compounds reported
in this study have been shown to be constituents of the essential oils of the wood-rotting
fungi S. commune, Datronia mollis and Pycnoporus cinnabarinus [49]. α-Curcumene, β-
bisabolene and β-bisabolol have been identified in S. commune (Shi-2), and are constituents
of the essential oil of S. commune [49]. Cadinene was present in the volatiles released
from Tr. versicolor and was also identified in the essential oil of S. commune [49]. Bis-
abolol was the more abundant compound in the volatiles released from S. commune (Shi-2).
Interestingly, this monocyclic sesquiterpene alcohol has been suggested for possible medi-
cal uses as a means of improving antioxidant capability and restoring the redox balance by
antagonising oxidative stress [50]. Moreover, it has been suggested that bisabolol, and com-
pounds of the same type, might enhance bacterial permeability and susceptibility to exogenous
antimicrobial compounds [51], whereas bisabolene has been shown to have bactericidal and
bacteriostatic effects against Staphylococcus aureus [52]. Both β-bisabolol and β-bisabolene
were present in the two strains of S. commune. β-Bisabolol was the most abundant compound
released from the more active strain, S. commune (Shi-2) (35.67%), and the percentage of
β-bisabolene was similar (6.96 and 6.36%) in both strain of S. commune. These results, and
those from the literature, lead us to propose that β-bisabolol might facilitate the antimicrobial
activity of β-bisabolene. However, the possible toxic effects of high concentrations of ethanol
[56.19 and 25.38% in S. commune (Shi-1) and S. commune (Shi-2), respectively] cannot be ruled
out. Some studies have shown that CO2 concentrations >10% can inhibit both the growth and
sporulation of different fungal species [30]. This parameter was not evaluated in this study, and
it is therefore not possible to rule out a possible negative effect of this compound on the growth
of the phytopathogenic strains.

In summary, VOCs of both strains of S. commune were the most active in inhibiting B. cinerea
growth. Future studies will be carried out to evaluate the effect of the composition of the growth
medium on the production and bioactivity of VOCs, the dynamics of the volatiles released, and
the antifungal effect of both individual and mixtures of identified volatile compounds in order to
determine which volatile compounds are responsible for the biological activity of S. commune.
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